When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The drag equation may be derived to within a multiplicative constant by the method of dimensional analysis. If a moving fluid meets an object, it exerts a force on the object. Suppose that the fluid is a liquid, and the variables involved – under some conditions – are the: speed u, fluid density ρ, kinematic viscosity ν of the fluid,

  3. Drag (physics) - Wikipedia

    en.wikipedia.org/wiki/Drag_(physics)

    Parasitic drag is made up of multiple components including viscous pressure drag (form drag), and drag due to surface roughness (skin friction drag). Additionally, the presence of multiple bodies in relative proximity may incur so called interference drag , which is sometimes described as a component of parasitic drag.

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    Note the minus sign in the equation, the drag force points in the opposite direction to the relative velocity: drag opposes the motion. Stokes' law makes the following assumptions for the behavior of a particle in a fluid: Laminar flow; No inertial effects (zero Reynolds number) Spherical particles; Homogeneous (uniform in composition) material

  5. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  6. Drag area - Wikipedia

    en.wikipedia.org/wiki/Drag_area

    In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product C d A , {\displaystyle C_{d}A,} where A {\displaystyle A} is a representative area of the object, and C d {\displaystyle C_{d}} is the drag coefficient ...

  7. Cunningham correction factor - Wikipedia

    en.wikipedia.org/wiki/Cunningham_correction_factor

    The derivation of Stokes' law, which is used to calculate the drag force on small particles, assumes a no-slip condition which is no longer correct at high Knudsen numbers. The Cunningham slip correction factor allows predicting the drag force on a particle moving a fluid with Knudsen number between the continuum regime and free molecular flow.

  8. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...

  9. Automobile drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Automobile_drag_coefficient

    The force F required to overcome drag is calculated with the drag equation: = Therefore: = Where the drag coefficient and reference area have been collapsed into the drag area term. This allows direct estimation of the drag force at a given speed for any vehicle for which only the drag area is known and therefore easier comparison.