Ad
related to: k&j magnetic strength chart- Neodymium Magnets
World's strongest magnets!
Available in all shapes and sizes!
- Rings
Huge variety of ring shaped magnets
Countersunk shapes included
- Magnets by Application
Find magnets for every application
Explore new ways to use magnets
- Grade N52 Magnets
Huge selection
Strongest grade of neodymium
- Neodymium Magnets
Search results
Results From The WOW.Com Content Network
In magnetics, the maximum energy product is an important figure-of-merit for the strength of a permanent magnet material. It is often denoted (BH) max and is typically given in units of either kJ/m 3 (kilojoules per cubic meter, in SI electromagnetism) or MGOe (mega-gauss-oersted, in gaussian electromagnetism). [1] [2] 1 MGOe is equivalent to 7 ...
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
Superconducting magnetic energy storage: 0.008 [35] >95% Capacitor: 0.002 [36] Neodymium magnet: 0.003 [37] Ferrite magnet: 0.0003 [37] Spring power (clock spring), torsion spring: 0.0003 [38] 0.0006: Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/L) Peak recovery efficiency % Practical recovery efficiency %
Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B: Measure for the strength of the magnetic field tesla (T = Wb/m 2) M T −2 I −1: pseudovector field Magnetic moment (or magnetic dipole moment) m: The component of magnetic strength and orientation that can be represented by an ...
Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva [131] 1.2×10 9 J: Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s) 1.4×10 9 J: Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh) [132] [133] 2×10 9 J: Energy of an ordinary 61 liter ...
magnetic flux density, magnetic induction: tesla: T = Wb/m 2 = N⋅A −1 ⋅m −1: kg⋅s −2 ⋅A −1: Φ, Φ M, Φ B magnetic flux: weber: Wb = V⋅s kg⋅m 2 ⋅s −2 ⋅A −1: H magnetic field strength ampere per metre: A/m A⋅m −1: F magnetomotive force: ampere: A = Wb/H A R magnetic reluctance: inverse henry: H −1 = A/Wb kg − ...
The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre). Dimensional analysis shows that magnetic charges relate by q m (Wb) = μ 0 q m (Am).
Hysteresis loop Induction B as function of field strength H for H varying between H min and H max; for ferromagnetic material the B has different values for H going up and down, therefore a plot of the function forms a loop instead of a curve joining two points; for perminvar type materials, the loop is a "rectangle" (Domain Structure of Perminvar Having a Rectangular Hysteresis Loop, Williams ...
Ad
related to: k&j magnetic strength chart