Search results
Results From The WOW.Com Content Network
The first: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001600 (sequence A000142 in the OEIS). 0! = 1 is sometimes included. A k-smooth number (for a natural number k) has its prime factors ≤ k (so it is also j-smooth for any j > k). m is smoother than n if the largest prime factor of m is below the largest of n.
Two numbers with the same "abundancy" form a friendly pair; ... The sum of an integer's unique factors, up to n=2000. ... 24 is friendly, with its smallest friend ...
Any Ruth–Aaron pair of square-free integers belongs to both lists with the same sum of prime factors. The intersection also contains pairs that are not square-free, for example (7129199, 7129200) = (7×11 2 ×19×443, 2 4 ×3×5 2 ×13×457).
However, amicable numbers where the two members have different smallest prime factors do exist: there are seven such pairs known. [8] Also, every known pair shares at least one common prime factor. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 10 65.
If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.
All pairs of positive coprime numbers (m, n) (with m > n) can be arranged in two disjoint complete ternary trees, one tree starting from (2, 1) (for even–odd and odd–even pairs), [10] and the other tree starting from (3, 1) (for odd–odd pairs). [11] The children of each vertex (m, n) are generated as follows:
As of 2024, it is known that F n is composite for 5 ≤ n ≤ 32, although of these, complete factorizations of F n are known only for 0 ≤ n ≤ 11, and there are no known prime factors for n = 20 and n = 24. [5] The largest Fermat number known to be composite is F 18233954, and its prime factor 7 × 2 18233956 + 1 was discovered in October 2020.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.