Search results
Results From The WOW.Com Content Network
An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy.It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters.
Name First elements Short description OEIS Kolakoski sequence: 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, ... The n th term describes the length of the n th run : A000002: Euler's ...
The complete sequences include: The sequence of the number 1 followed by the prime numbers (studied by S. S. Pillai [3] and others); this follows from Bertrand's postulate. [1] The sequence of practical numbers which has 1 as the first term and contains all other powers of 2 as a subset. [4] (sequence A005153 in the OEIS)
The transitivity of M implies that the integers and integer sequences inside M are actually integers and sequences of integers. An integer sequence is a definable sequence relative to M if there exists some formula P ( x ) in the language of set theory, with one free variable and no parameters, which is true in M for that integer sequence and ...
If we take a series of short exact sequences linked by chain complexes (that is, a short exact sequence of chain complexes, or from another point of view, a chain complex of short exact sequences), then we can derive from this a long exact sequence (that is, an exact sequence indexed by the natural numbers) on homology by application of the zig ...
For finite sequences, Kolmogorov defines randomness of a binary string of length n as the entropy (or Kolmogorov complexity) normalized by the length n. In other words, if the Kolmogorov complexity of the string is close to n, it is very random; if the complexity is far below n, it is not so random. The dual concept of randomness is ...
Angel numbers are repeating number sequences, often used as guides for deeper spiritual exploration. Ranging from 000 to 999, each sequence carries its own distinct meaning and energy.
[2] [3] Specifically, each of the sequences AC, AB, AD; BC, BA, BD; CA, CD, CB; and DA, DC, DB are harmonic progressions, where each of the distances is signed according to a fixed orientation of the line. In a triangle, if the altitudes are in arithmetic progression, then the sides are in harmonic progression.