Search results
Results From The WOW.Com Content Network
The equation used to model belt friction is, assuming the belt has no mass and its material is a fixed composition: [2] = where is the tension of the pulling side, is the tension of the resisting side, is the static friction coefficient, which has no units, and is the angle, in radians, formed by the first and last spots the belt touches the pulley, with the vertex at the center of the pulley.
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Belt friction is a physical property observed from the forces acting on a belt wrapped around a pulley, when one end is being pulled. The resulting tension, which acts on both ends of the belt, can be modeled by the belt friction equation.
It does assume Coulomb's friction law, which more or less requires (scrupulously) clean surfaces. This theory is for massive bodies such as the railway wheel-rail contact. With respect to road-tire interaction, an important contribution concerns the so-called magic tire formula by Hans Pacejka. [7] In the 1970s, many numerical models were devised.
For a toothed belt drive, the number of teeth on the sprocket can be used. For friction belt drives the pitch radius of the input and output pulleys must be used. The mechanical advantage of a pair of a chain drive or toothed belt drive with an input sprocket with N A teeth and the output sprocket has N B teeth is given by
A toothed belt-pulley design provides improved efficiency for mechanical power transmission using a tractrix catenary shape for its teeth. [7] This shape minimizes the friction of the belt teeth engaging the pulley, because the moving teeth engage and disengage with minimal sliding contact.
In mathematical physics, this law arises as a solution of the BGK equation. Belt A closed loop of flexible material used to transmit mechanical power from one pulley to another. Belt friction Describes the friction forces between a belt and a surface, such as a belt wrapped around a bollard. When one end of the belt is being pulled only part of ...
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...