Search results
Results From The WOW.Com Content Network
The (now obsolete) 74S135 implemented four two-input XOR/XNOR gates or two three-input XNOR gates. Both the TTL 74LS implementation, the 74LS266, as well as the CMOS gates (CD4077, 74HC4077 and 74HC266 and so on) are available from most semiconductor manufacturers such as Texas Instruments or NXP , etc. [ 2 ] They are usually available in both ...
If the truth table for a NAND gate is examined or by applying De Morgan's laws, it can be seen that if any of the inputs are 0, then the output will be 1. To be an OR gate, however, the output must be 1 if any input is 1.
2 dual 4-input NAND gate Schmitt trigger 14 SN74LS18: 74x19 6 hex inverter gate Schmitt trigger 14 SN74LS19: 74x20 2 dual 4-input NAND gate 14 SN74LS20: 74x21 2 dual 4-input AND gate 14 SN74LS21: 74x22 2 dual 4-input NAND gate open-collector 14 SN74LS22: 74x23 2 dual 4-input NOR gate with strobe, one gate expandable with 74x60 16 SN7423: 74x24 4
The first part number in the series, the 7400, is a 14-pin IC containing four two-input NAND gates. Each gate uses two input pins and one output pin, with the remaining two pins being power (+5 V) and ground. This part was made in various through-hole and surface-mount packages, including flat pack and plastic/ceramic dual in-line.
The 3-input Fredkin gate is functionally complete reversible gate by itself – a sole sufficient operator. There are many other three-input universal logic gates, such as the Toffoli gate . In quantum computing , the Hadamard gate and the T gate are universal, albeit with a slightly more restrictive definition than that of functional completeness.
In digital electronics, a NAND gate (NOT-AND) is a logic gate which produces an output which is false only if all its inputs are true; thus its output is complement to that of an AND gate. A LOW (0) output results only if all the inputs to the gate are HIGH (1); if any input is LOW (0), a HIGH (1) output results.
The following is a list of CMOS 4000-series digital logic integrated circuits.In 1968, the original 4000-series was introduced by RCA.Although more recent parts are considerably faster, the 4000 devices operate over a wide power supply range (3V to 18V recommended range for "B" series) and are well suited to unregulated battery powered applications and interfacing with sensitive analogue ...
A standard LFSR has a single XOR or XNOR gate, where the input of the gate is connected to several "taps" and the output is connected to the input of the first flip-flop. A MISR has the same structure, but the input to every flip-flop is fed through an XOR/XNOR gate. For example, a 4-bit MISR has a 4-bit parallel output and a 4-bit parallel input.