Search results
Results From The WOW.Com Content Network
Writing integers as a sum of two squares [ edit ] When used in conjunction with one of Fermat's theorems , the Brahmagupta–Fibonacci identity proves that the product of a square and any number of primes of the form 4 n + 1 is a sum of two squares.
One of the diagonals (the one that is a line of symmetry) divides the right kite into two right triangles and is also a diameter of the circumcircle. In a tangential quadrilateral (one with an incircle), the four line segments between the center of the incircle and the points where it is tangent to the quadrilateral partition the quadrilateral ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.
The four smaller triangles formed by the diagonals and sides of a convex quadrilateral have the property that the product of the areas of two opposite triangles equals the product of the areas of the other two triangles. [53]
Factorizations of sums of two squares can be obtained using the sum of two squares theorem. Any other integer Apollonian gasket can be formed by multiplying a primitive root quadruple by an arbitrary integer, and any quadruple in one of these gaskets (that is, any integer solution to the Descartes equation) can be formed by reversing the ...
Orthodiagonal quadrilaterals are the only quadrilaterals for which the sides and the angle formed by the diagonals do not uniquely determine the area. [4] For example, two rhombi both having common side a (and, as for all rhombi, both having a right angle between the diagonals), but one having a smaller acute angle than the other, have ...