Search results
Results From The WOW.Com Content Network
Hybridization without change in chromosome number is called homoploid hybrid speciation. [1] This is the situation found in most animal hybrids. For a hybrid to be viable, the chromosomes of the two organisms will have to be very similar, i.e., the parent species must be closely related, or else the difference in chromosome arrangement will ...
Ohno presented the first version of the 2R hypothesis as part of his larger argument for the general importance of gene duplication in evolution.Based on relative genome sizes and isozyme analysis, he suggested that ancestral fish or amphibians had undergone at least one and possibly more cases of "tetraploid evolution".
Polyploidy is the result of whole-genome duplication during the evolution of species. It may occur due to abnormal cell division, either during mitosis, or more commonly from the failure of chromosomes to separate during meiosis or from the fertilization of an egg by more than one sperm. [1]
For example, homoploid hybridization is hybridization where the offspring have the same ploidy level as the two parental species. This contrasts with a common situation in plants where chromosome doubling accompanies or occurs soon after hybridization. Similarly, homoploid speciation contrasts with polyploid speciation. [citation needed]
Eukaryote hybrid genomes result from interspecific hybridization, where closely related species mate and produce offspring with admixed genomes.The advent of large-scale genomic sequencing has shown that hybridization is common, and that it may represent an important source of novel variation.
Hybridization is an important means of speciation in plants, since polyploidy (having more than two copies of each chromosome) is tolerated in plants more readily than in animals. [ 80 ] [ 81 ] Polyploidy is important in hybrids as it allows reproduction, with the two different sets of chromosomes each being able to pair with an identical ...
1. An extrinsic barrier separates a species population into two but they come into contact before reproductive isolation is sufficient to result in speciation. The two populations fuse back into one species 2. Speciation by reinforcement 3. Two separated populations stay genetically distinct while hybrid swarms form in the zone of contact 4.
Hybrid zones can form from secondary contact. A hybrid zone exists where the ranges of two interbreeding species or diverged intraspecific lineages meet and cross-fertilize. . Hybrid zones can form in situ due to the evolution of a new lineage [1] [page needed] but generally they result from secondary contact of the parental forms after a period of geographic isolation, which allowed their ...