Search results
Results From The WOW.Com Content Network
A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.
BlooP and FlooP (Bounded loop and Free loop) are simple programming languages designed by Douglas Hofstadter to illustrate a point in his book Gödel, Escher, Bach. [1] BlooP is a Turing-incomplete programming language whose main control flow structure is a bounded loop (i.e. recursion is not permitted [citation needed]).
Variable-binding operators are logical operators that occur in almost every formal language. A binding operator Q takes two arguments: a variable v and an expression P, and when applied to its arguments produces a new expression Q(v, P). The meaning of binding operators is supplied by the semantics of the language and does not concern us here.
Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and
A Banach space is said to have bounded approximation property (BAP), if it has the -AP for some . A Banach space is said to have metric approximation property ( MAP ), if it is 1-AP. A Banach space is said to have compact approximation property ( CAP ), if in the definition of AP an operator of finite rank is replaced with a compact operator.
For example, bijective operators preserving the structure of a vector space are precisely the invertible linear operators. They form the general linear group under composition. However, they do not form a vector space under operator addition; since, for example, both the identity and −identity are invertible (bijective), but their sum, 0, is not.
A T ∈ L(H) is a Fredholm operator if and only if T is invertible modulo compact perturbation, i.e. TS = I + C 1 and ST = I + C 2 for some bounded operator S and compact operators C 1 and C 2. In other words, an operator T ∈ L(H) is Fredholm, in the classical sense, if and only if its projection in the Calkin algebra is invertible.
Since the graph of T is closed, the proof reduces to the case when : is a bounded operator between Banach spaces. Now, factors as / .Dually, ′ is ′ () ′ ′ (/ ) ′ ′.