When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    The scikit-learn Python package implements some multi-labels algorithms and metrics. The scikit-multilearn Python package specifically caters to the multi-label classification. It provides multi-label implementation of several well-known techniques including SVM, kNN and many more. The package is built on top of scikit-learn ecosystem.

  3. Classifier chains - Wikipedia

    en.wikipedia.org/wiki/Classifier_chains

    For example, a multi-label data set with 10 labels can have up to = label combinations. This increases the run-time of classification. This increases the run-time of classification. The Classifier Chains method is based on the BR method and it is efficient even on a big number of labels.

  4. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class. This is true regardless of whether the probability estimate is slightly, or even grossly inaccurate.

  5. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, peach, orange, or an ...

  6. Multi-task learning - Wikipedia

    en.wikipedia.org/wiki/Multi-task_learning

    [citation needed] Further examples of settings for MTL include multiclass classification and multi-label classification. [ 7 ] Multi-task learning works because regularization induced by requiring an algorithm to perform well on a related task can be superior to regularization that prevents overfitting by penalizing all complexity uniformly.

  7. Label propagation algorithm - Wikipedia

    en.wikipedia.org/wiki/Label_propagation_algorithm

    Label propagation is a semi-supervised algorithm in machine learning that assigns labels to previously unlabeled data points. At the start of the algorithm, a (generally small) subset of the data points have labels (or classifications). These labels are propagated to the unlabeled points throughout the course of the algorithm. [1]

  8. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    For both classification and regression, a useful technique can be to assign weights to the contributions of the neighbors, so that nearer neighbors contribute more to the average than distant ones. For example, a common weighting scheme consists of giving each neighbor a weight of 1/d, where d is the distance to the neighbor. [3]

  9. Sequence labeling - Wikipedia

    en.wikipedia.org/wiki/Sequence_labeling

    Sequence labeling can be treated as a set of independent classification tasks, one per member of the sequence. However, accuracy is generally improved by making the optimal label for a given element dependent on the choices of nearby elements, using special algorithms to choose the globally best set of labels for the entire sequence at once.