Search results
Results From The WOW.Com Content Network
A newton is equal to 1 kg⋅m/s 2, and a kilogram-force is 9.80665 N, [3] meaning that 1 kgf/cm 2 equals 98.0665 kilopascals (kPa). In some older publications, kilogram-force per square centimetre is abbreviated ksc instead of kg/cm 2.
≡ 0.453 592 37 kg = 7000 grains ≡ 0.453 592 37 kg: pound (metric) ≡ 500 g = 500 g pound (troy) lb t ≡ 5760 grains = 0.373 241 7216 kg: quarter (imperial) ≡ 1 ⁄ 4 long cwt = 2 st = 28 lb av = 12.700 586 36 kg: quarter (informal) ≡ 1 ⁄ 4 short ton = 226.796 185 kg: quarter, long (informal) ≡ 1 ⁄ 4 long ton = 254.011 7272 kg ...
The kilogram-force (kgf or kg F), or kilopond (kp, from Latin: pondus, lit. 'weight'), is a non-standard gravitational metric unit of force . It is not accepted for use with the International System of Units (SI) [ 1 ] and is deprecated for most uses.
A special type of area density is called column density (also columnar mass density or simply column density), denoted ρ A or σ.It is the mass of substance per unit area integrated along a path; [1] It is obtained integrating volumetric density over a column: [2] =.
kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit volume mol⋅m −3: L −3 N: intensive Molar energy: J/mol: Amount of energy present in a system ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
Surface power density is an important factor in comparison of industrial energy sources. [1] The concept was popularised by geographer Vaclav Smil.The term is usually shortened to "power density" in the relevant literature, which can lead to confusion with homonymous or related terms.