Search results
Results From The WOW.Com Content Network
The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is Therefore, the molar concentration of water is
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
Change in volume with increasing ethanol fraction. The molar volume of a substance i is defined as its molar mass divided by its density ρ i 0: , = For an ideal mixture containing N components, the molar volume of the mixture is the weighted sum of the molar volumes of its individual components.
The mole ratio is also called amount ratio. [2] If n i is much smaller than n tot (which is the case for atmospheric trace constituents), the mole ratio is almost identical to the mole fraction . Mass ratio
In chemistry, the mass fraction of a substance within a mixture is the ratio (alternatively denoted ) of the mass of that substance to the total mass of the mixture. [1] Expressed as a formula, the mass fraction is:
Formula of glass component Desired concentration of glass component, wt% Molar mass of glass component, g/mol Batch component Formula of batch component Molar mass of batch component, g/mol SiO 2: 67 60.0843 Sand SiO 2: 60.0843 Na 2 O 12 61.9789 Trona: Na 3 H(CO 3) 2 *2H 2 O 226.0262 CaO 10 56.0774 Lime CaCO 3: 100.0872 Al 2 O 3: 5 101.9613 ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is 39.962 590 98 (22) g/mol, whereas the molar mass of calcium-42 is 41.958 618 01 (27) g/mol, and of calcium with the normal isotopic mix is 40.078(4 ...