When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bertrand's theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_theorem

    Joseph Bertrand. In classical mechanics, Bertrand's theorem states that among central-force potentials with bound orbits, there are only two types of central-force (radial) scalar potentials with the property that all bound orbits are also closed orbits.

  3. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.

  4. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that

  5. Daniel Larsen (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Daniel_Larsen_(mathematician)

    Daniel Larsen (born 2003) is an American mathematician known for proving [1] a 1994 conjecture of W. R. Alford, Andrew Granville and Carl Pomerance on the distribution of Carmichael numbers, commonly known as Bertrand's postulate for Carmichael numbers. [2]

  6. Talk:Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Talk:Bertrand's_postulate

    The binary conjecture is sufficient for Bertrand's postulate, whereas Bertrand's postulate is necessary for the binary conjecture. Also, the binary conjecture and the ternary conjecture are equivalent. If one is true, so is the other. 2605:E000:6116:7D00:4CD6:5569:EA6F:731C 14:40, 4 October 2017 (UTC)

  7. Kepler problem - Wikipedia

    en.wikipedia.org/wiki/Kepler_problem

    They are the only two problems that have closed orbits for every possible set of initial conditions, i.e., return to their starting point with the same velocity (Bertrand's theorem). [1]: 92 The Kepler problem also conserves the Laplace–Runge–Lenz vector, which has since been generalized to include other interactions.

  8. Bertrand's ballot theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_ballot_theorem

    Clearly the theorem is true if p > 0 and q = 0 when the probability is 1, given that the first candidate receives all the votes; it is also true when p = q > 0 as we have just seen. Assume it is true both when p = a − 1 and q = b , and when p = a and q = b − 1, with a > b > 0.

  9. Bertrand theorem - Wikipedia

    en.wikipedia.org/?title=Bertrand_theorem&redirect=no

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Bertrand_theorem&oldid=111268896"This page was last edited on 27 February 2007, at 05:24 (UTC). (UTC).