Search results
Results From The WOW.Com Content Network
A gamma ray, also known as gamma radiation (symbol γ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei.It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays.
A gamma wave or gamma rhythm is a pattern of neural oscillation in humans with a frequency between 30 and 100 Hz, the 40 Hz point being of particular interest. [1] Gamma rhythms are correlated with large-scale brain network activity and cognitive phenomena such as working memory , attention , and perceptual grouping , and can be increased in ...
Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an atomic nucleus. Gamma rays, X-rays, and extreme ultraviolet rays are called ionizing radiation because their high photon energy is able to ionize atoms, causing chemical reactions. Longer-wavelength ...
Gamma radiation detected in an isopropanol cloud chamber. Gamma (γ) radiation consists of photons with a wavelength less than 3 × 10 −11 m (greater than 10 19 Hz and 41.4 keV). [4] Gamma radiation emission is a nuclear process that occurs to rid an unstable nucleus of excess energy after most nuclear reactions. Both alpha and beta particles ...
A monochromatic wave (a wave of a single frequency) consists of successive troughs and crests, and the distance between two adjacent crests or troughs is called the wavelength. Waves of the electromagnetic spectrum vary in size, from very long radio waves longer than a continent to very short gamma rays smaller than atom nuclei.
Gamma rays, X-rays, and the higher energy ultraviolet part of the electromagnetic spectrum are ionizing radiation; whereas the lower energy ultraviolet, visible light, infrared, microwaves, and radio waves are non-ionizing radiation. Nearly all types of laser light are non-ionizing radiation.
Any successful model of GRB emission must explain the physical process for generating gamma-ray emission that matches the observed diversity of light curves, spectra, and other characteristics. [133] Particularly challenging is the need to explain the very high efficiencies that are inferred from some explosions: some gamma-ray bursts may ...
Maxwell's equations may be combined to demonstrate how fluctuations in electromagnetic fields (waves) propagate at a constant speed in vacuum, c (299 792 458 m/s [2]). Known as electromagnetic radiation, these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays.