When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    where is the order of filter, is the cutoff frequency (approximately the −3 dB frequency), and is the DC gain (gain at zero frequency). It can be seen that as n {\displaystyle n} approaches infinity, the gain becomes a rectangle function and frequencies below ω c {\displaystyle \omega _{c}} will be passed with gain G 0 {\displaystyle G_{0 ...

  3. Gaussian filter - Wikipedia

    en.wikipedia.org/wiki/Gaussian_filter

    The response value of the Gaussian filter at this cut-off frequency equals exp(−0.5) ≈ 0.607. However, it is more common to define the cut-off frequency as the half power point: where the filter response is reduced to 0.5 (−3 dB) in the power spectrum, or 1/ √ 2 ≈ 0.707 in the amplitude spectrum (see e.g. Butterworth filter).

  4. Downsampling (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Downsampling_(signal...

    Reduce high-frequency signal components with a digital lowpass filter. Decimate the filtered signal by M; that is, keep only every M th sample. Step 2 alone creates undesirable aliasing (i.e. high-frequency signal components will copy into the lower frequency band and be mistaken for lower frequencies). Step 1, when necessary, suppresses ...

  5. Zipf's law - Wikipedia

    en.wikipedia.org/wiki/Zipf's_law

    Zipf's law can be visuallized by plotting the item frequency data on a log-log graph, with the axes being the logarithm of rank order, and logarithm of frequency. The data conform to Zipf's law with exponent s to the extent that the plot approximates a linear (more precisely, affine ) function with slope −s .

  6. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    If both and are positive, the output will resemble a low pass filter, with the high frequency part of the noise decreased. If φ 1 {\displaystyle \varphi _{1}} is positive while φ 2 {\displaystyle \varphi _{2}} is negative, then the process favors changes in sign between terms of the process.

  7. Low-pass filter - Wikipedia

    en.wikipedia.org/wiki/Low-pass_filter

    The meanings of 'low' and 'high'—that is, the cutoff frequency—depend on the characteristics of the filter. The term "low-pass filter" merely refers to the shape of the filter's response; a high-pass filter could be built that cuts off at a lower frequency than any low-pass filter—it is their responses that set them apart.

  8. Gibbs phenomenon - Wikipedia

    en.wikipedia.org/wiki/Gibbs_phenomenon

    In the case of low-pass filtering, these can be reduced or eliminated by using different low-pass filters. In MRI, the Gibbs phenomenon causes artifacts in the presence of adjacent regions of markedly differing signal intensity. This is most commonly encountered in spinal MRIs where the Gibbs phenomenon may simulate the appearance of syringomyelia.

  9. Difference of Gaussians - Wikipedia

    en.wikipedia.org/wiki/Difference_of_Gaussians

    The difference of Gaussians algorithm removes high frequency detail that often includes random noise, rendering this approach one of the most suitable for processing images with a high degree of noise. A major drawback to application of the algorithm is an inherent reduction in overall image contrast produced by the operation. [1]