When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Flexural strength - Wikipedia

    en.wikipedia.org/wiki/Flexural_strength

    The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]

  3. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per ...

  4. Flexural rigidity - Wikipedia

    en.wikipedia.org/wiki/Flexural_rigidity

    where is the flexural modulus (in Pa), is the second moment of area (in m 4), is the transverse displacement of the beam at x, and () is the bending moment at x. The flexural rigidity (stiffness) of the beam is therefore related to both , a material property, and , the physical geometry of the beam. If the material exhibits Isotropic behavior ...

  5. Four-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Four-point_flexural_test

    Values for the flexural strength measured with four-point bending will be significantly lower than with three-point bending., [8] Compared with three-point bending test, this method is more suitable for strength evaluation of butt joint specimens. The advantage of four-point bending test is that a larger portion of the specimen between two ...

  6. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    For this reason, the Euler–Bernoulli beam equation is widely used in engineering, especially civil and mechanical, to determine the strength (as well as deflection) of beams under bending. Both the bending moment and the shear force cause stresses in the beam.

  7. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  8. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The dynamic bending of beams, [12] also known as flexural vibrations of beams, was first investigated by Daniel Bernoulli in the late 18th century. Bernoulli's equation of motion of a vibrating beam tended to overestimate the natural frequencies of beams and was improved marginally by Rayleigh in 1877 by the addition of a mid-plane rotation.

  9. List of materials properties - Wikipedia

    en.wikipedia.org/wiki/List_of_materials_properties

    Flexural modulus; Flexural strength: Maximum bending stress a material can withstand before failure (MPa) Fracture toughness: Ability of a material containing a crack to resist fracture (J/m^2) Friction coefficient: The amount of force normal to surface which converts to force resisting relative movement of contacting surfaces between material ...