Search results
Results From The WOW.Com Content Network
In the following, represents the real numbers with their usual topology. The subspace topology of the natural numbers, as a subspace of , is the discrete topology.; The rational numbers considered as a subspace of do not have the discrete topology ({0} for example is not an open set in because there is no open subset of whose intersection with can result in only the singleton {0}).
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property .
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
Several topologies can be defined on a given space. Changing a topology consists of changing the collection of open sets. This changes which functions are continuous and which subsets are compact or connected. Metric spaces are an important class of topological spaces where the distance between any two points is defined by a function called a ...
A topological space consists of a pair (,) where is a set (whose elements are called points) and is a topology on , which is a family of sets (whose elements are called open sets) over that contains both the empty set and itself, and is closed under arbitrary set unions and finite set intersections.
A subset of a topological space is said to be connected if it is connected under its subspace topology. Some authors exclude the empty set (with its unique topology) as a connected space, but this article does not follow that practice. For a topological space X the following conditions are equivalent: X is connected.
Arbitrary topological spaces, investigated by general topology (called also point-set topology) are too diverse for a complete classification up to homeomorphism. Compact topological spaces are an important class of topological spaces ("species" of this "type"). Every continuous function is bounded on such space.
Equivalently the constructible subsets of a topological space are the smallest collection of subsets of that (i) contains all open retrocompact subsets and (ii) contains all complements and finite unions (and hence also finite intersections) of sets in it. In other words, constructible sets are precisely the Boolean algebra generated by ...