Search results
Results From The WOW.Com Content Network
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
If a test particle is lowered in orbit toward a central object in GR, the test particle will eventually require a speed greater than light to maintain an orbit. This defines the innermost possible instantaneous orbit, known as the innermost circular orbit, which lies at 1.5 times the Schwarzschild radius (for a Black Hole governed by the ...
A circular orbit is depicted in the top-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy remains constant throughout the constant speed circular orbit.
From a circular orbit, thrust applied in a direction opposite to the satellite's motion changes the orbit to an elliptical one; the satellite will descend and reach the lowest orbital point (the periapse) at 180 degrees away from the firing point; then it will ascend back. The period of the resultant orbit will be less than that of the original ...
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
A satellite in a synchronous orbit that is both equatorial and circular will appear to be suspended motionless above a point on the orbited planet's equator. For synchronous satellites orbiting Earth, this is also known as a geostationary orbit. However, a synchronous orbit need not be equatorial; nor circular.
In order to determine the unknown orbit of a body, some observations of its motion with time are required. In early modern astronomy, the only available observational data for celestial objects were the right ascension and declination, obtained by observing the body as it moved in its observation arc, relative to the fixed stars, using an optical telescope.
The orbital state vectors have now been found, the position (r 2) and velocity (v 2) vector for the second observation of the orbiting body. With these two vectors, the orbital elements can be found and the orbit determined.