Search results
Results From The WOW.Com Content Network
Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity. Integrals involving only logarithmic functions
In mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem , it is a very good approximation to the prime-counting function , which is defined as the number of prime numbers ...
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the p-th power of a number is p times the logarithm of the number itself; the logarithm of a p-th root is the logarithm of the number divided by p. The following ...
In particular, this explains use of integration by parts to integrate logarithm and inverse trigonometric functions. In fact, if f {\displaystyle f} is a differentiable one-to-one function on an interval, then integration by parts can be used to derive a formula for the integral of f − 1 {\displaystyle f^{-1}} in terms of the integral of f ...
Repeated integration by parts gives + + = (), where B n {\displaystyle B_{n}} is the n {\displaystyle n} th Bernoulli number (note that the limit of the sum as N → ∞ {\displaystyle N\to \infty } is not convergent, so this formula is just an asymptotic expansion ).