Ads
related to: inversive geometry formula
Search results
Results From The WOW.Com Content Network
In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied.
In inversive geometry, the inversive distance is a way of measuring the "distance" between two circles, ... the inversive distance can be defined by the formula [1] ...
In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k 2. The inverse of the curve C is then the locus of P as Q runs over C.
In 1831 the mathematician Ludwig Immanuel Magnus began to publish on transformations of the plane generated by inversion in a circle of radius R.His work initiated a large body of publications, now called inversive geometry.
A natural setting for problem of Apollonius is inversive geometry. [4] [12] The basic strategy of inversive methods is to transform a given Apollonius problem into another Apollonius problem that is simpler to solve; the solutions to the original problem are found from the solutions of the transformed problem by undoing the transformation ...
In inversive geometry a straight line is considered to be a generalized circle containing the point at infinity; inversion of the plane with respect to a line is a Euclidean reflection. More generally, a Möbius plane is an incidence structure with the same incidence relationships as the classical Möbius plane.
In Euclidean geometry, the inversion of a point X with respect to a point P is a point X* such that P is the midpoint of the line segment with endpoints X and X*. In other words, the vector from X to P is the same as the vector from P to X*. The formula for the inversion in P is x* = 2p − x. where p, x and x* are the position vectors of P, X ...
In geometry, two circles are said to be orthogonal if their respective tangent lines at the points of intersection are perpendicular (meet at a right angle). A straight line through a circle's center is orthogonal to it, and if straight lines are also considered as a kind of generalized circles , for instance in inversive geometry , then an ...