Search results
Results From The WOW.Com Content Network
The pygmy mammoth is an example of insular dwarfism, a case of Foster's rule, its unusually small body size an adaptation to the limited resources of its island home.. A biological rule or biological law is a generalized law, principle, or rule of thumb formulated to describe patterns observed in living organisms.
In Euclidean space, such a dilation is a similarity of the space. [2] Dilations change the size but not the shape of an object or figure. Every dilation of a Euclidean space that is not a congruence has a unique fixed point [3] that is called the center of dilation. [4] Some congruences have fixed points and others do not. [5]
Dilation (operator theory), a dilation of an operator on a Hilbert space; Dilation (morphology), an operation in mathematical morphology; Scaling (geometry), including: Homogeneous dilation , the scalar multiplication operator on a vector space or affine space; Inhomogeneous dilation, where scale factors may differ in different directions
Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris, France.Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and ...
Kleiber's law, like many other biological allometric laws, is a consequence of the physics and/or geometry of circulatory systems in biology. [5] Max Kleiber first discovered the law when analyzing a large number of independent studies on respiration within individual species. [2]
Biological rules describe patterns of variation within and across species most often in regard to size. While they are described as rules there are often many ...
Together with the translations, all homotheties of an affine (or Euclidean) space form a group, the group of dilations or homothety-translations. These are precisely the affine transformations with the property that the image of every line g is a line parallel to g .
Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.