Search results
Results From The WOW.Com Content Network
Regeneration: Some organisms can regenerate body parts. The production of new cells in such instances is achieved by mitosis. For example, starfish regenerate lost arms through mitosis. Asexual reproduction: Some organisms produce genetically similar offspring through asexual reproduction. For example, the hydra reproduces asexually by budding ...
Asexual reproduction is a type of reproduction that does not involve the fusion of gametes or change in the number of chromosomes. The offspring that arise by asexual reproduction from either unicellular or multicellular organisms inherit the full set of genes of their single parent and thus the newly created individual is genetically and ...
The cloning of an organism is a form of asexual reproduction. By asexual reproduction, an organism creates a genetically similar or identical copy of itself. The evolution of sexual reproduction is a major puzzle for biologists. The two-fold cost of sexual reproduction is that only 50% of organisms reproduce [1] and organisms only pass on 50% ...
Cell division in prokaryotes (binary fission) and eukaryotes (mitosis and meiosis). The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3.
Sexual reproduction is the most common life cycle in multicellular eukaryotes, such as animals, fungi and plants. [6] [7] Sexual reproduction also occurs in some unicellular eukaryotes. [2] [8] Sexual reproduction does not occur in prokaryotes, unicellular organisms without cell nuclei, such as bacteria and archaea.
In some cases, sporogenesis occurs via mitosis (e.g. in some fungi and algae). Mitotic sporogenesis is a form of asexual reproduction. Examples are the conidial fungi Aspergillus and Penicillium, for which mitospore formation appears to be the primary mode of reproduction.
An information theoretic analysis using a simplified but useful model shows that in asexual reproduction, the information gain per generation of a species is limited to 1 bit per generation, while in sexual reproduction, the information gain is bounded by , where is the size of the genome in bits.
In asexual reproduction the generation of new organisms does not require the fusion sperm with an egg. [1] However, in sexual reproduction new organisms are formed by the fusion of haploid sperm and eggs resulting in what is known as the zygote. [1] Although animals exhibit both sexual and asexual reproduction the vast majority of animals ...