When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conditional logistic regression - Wikipedia

    en.wikipedia.org/wiki/Conditional_logistic...

    In fact, it can be shown that the unconditional analysis of matched pair data results in an estimate of the odds ratio which is the square of the correct, conditional one. [ 2 ] In addition to tests based on logistic regression, several other tests existed before conditional logistic regression for matched data as shown in related tests .

  3. Non-negative least squares - Wikipedia

    en.wikipedia.org/wiki/Non-negative_least_squares

    In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative.

  4. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  5. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties.

  6. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    The template for any binary confusion matrix uses the four kinds of results discussed above (true positives, false negatives, false positives, and true negatives) along with the positive and negative classifications.

  7. Platt scaling - Wikipedia

    en.wikipedia.org/wiki/Platt_scaling

    In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]

  8. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The ONR research manager, Marvin Denicoff, stated that ONR, instead of ARPA, funded the Perceptron project, because the project was unlikely to produce technological results in the near or medium term. Funding from ARPA go up to the order of millions dollars, while from ONR are on the order of 10,000 dollars.

  9. Chi-square automatic interaction detection - Wikipedia

    en.wikipedia.org/wiki/Chi-square_automatic...

    Because it uses multiway splits by default, it needs rather large sample sizes to work effectively, since with small sample sizes the respondent groups can quickly become too small for reliable analysis. [citation needed] One important advantage of CHAID over alternatives such as multiple regression is that it is non-parametric. [citation needed]