When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Using this recursion, Bézout's integers s and t are given by s = s N and t = t N, where N + 1 is the step on which the algorithm terminates with r N+1 = 0. The validity of this approach can be shown by induction. Assume that the recursion formula is correct up to step k − 1 of the algorithm; in other words, assume that r j = s j a + t j b ...

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The GCD of a and b is their greatest positive common divisor in the preorder relation of divisibility. This means that the common divisors of a and b are exactly the divisors of their GCD. This is commonly proved by using either Euclid's lemma, the fundamental theorem of arithmetic, or the Euclidean algorithm. This is the meaning of "greatest ...

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    Recursion that contains only a single self-reference is known as single recursion, while recursion that contains multiple self-references is known as multiple recursion. Standard examples of single recursion include list traversal, such as in a linear search, or computing the factorial function, while standard examples of multiple recursion ...

  6. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that + = (,).

  7. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Therefore, equalities like d = gcd(p, q) or gcd(p, q) = gcd(r, s) are common abuses of notation which should be read "d is a GCD of p and q" and "p and q have the same set of GCDs as r and s". In particular, gcd(p, q) = 1 means that the invertible constants are the only common divisors.

  8. Lehmer's GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Lehmer's_GCD_algorithm

    Lehmer's GCD algorithm, named after Derrick Henry Lehmer, is a fast GCD algorithm, an improvement on the simpler but slower Euclidean algorithm. It is mainly used for big integers that have a representation as a string of digits relative to some chosen numeral system base , say β = 1000 or β = 2 32 .

  9. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm (e.g. Frigo & Johnson, 2005), transposing the matrix in memory (to make the columns contiguous) may ...