Search results
Results From The WOW.Com Content Network
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .
This implies that three does not divide u and that the two factors are cubes of two smaller numbers, r and s. 2u = r 3 u 2 + 3v 2 = s 3. Since u 2 + 3v 2 is odd, so is s. A crucial lemma shows that if s is odd and if it satisfies an equation s 3 = u 2 + 3v 2, then it can be written in terms of two integers e and f. s = e 2 + 3f 2. so that u = e ...
Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D scale where it is aligned with the left index on ...
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
Multiplication symbols are usually omitted, and implied, when there is no operator between two variables or terms, or when a coefficient is used. For example, 3 × x 2 is written as 3x 2, and 2 × x × y is written as 2xy. [5] Sometimes, multiplication symbols are replaced with either a dot or center-dot, so that x × y is written as either x ...
While base ten is normally used for scientific notation, powers of other bases can be used too, [25] base 2 being the next most commonly used one. For example, in base-2 scientific notation, the number 1001 b in binary (=9 d) is written as 1.001 b × 2 d 11 b or 1.001 b × 10 b 11 b using binary numbers (or shorter 1.001 × 10 11 if binary ...
For example, using single-precision IEEE arithmetic, if x = −2 −149, then x/2 underflows to −0, and dividing 1 by this result produces 1/(x/2) = −∞. The exact result −2 150 is too large to represent as a single-precision number, so an infinity of the same sign is used instead to indicate overflow.
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).