When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    The basic idea of logistic regression is to use the mechanism already developed for linear regression by modeling the probability p i using a linear predictor function, i.e. a linear combination of the explanatory variables and a set of regression coefficients that are specific to the model at hand but the same for all trials.

  3. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    The researcher performs a logistic regression, where "success" is a grade of A in the memory test, and the explanatory (x) variable is dose of caffeine. The logistic regression indicates that caffeine dose is significantly associated with the probability of an A grade (p < 0.001). However, the plot of the probability of an A grade versus mg ...

  4. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    The softmax function thus serves as the equivalent of the logistic function in binary logistic regression. Note that not all of the vectors of coefficients are uniquely identifiable. This is due to the fact that all probabilities must sum to 1, making one of them completely determined once all the rest are known.

  5. Conditional logistic regression - Wikipedia

    en.wikipedia.org/.../Conditional_logistic_regression

    Logistic regression as described above works satisfactorily when the number of strata is small relative to the amount of data. If we hold the number of strata fixed and increase the amount of data, estimates of the model parameters ( α i {\displaystyle \alpha _{i}} for each stratum and the vector β {\displaystyle {\boldsymbol {\beta ...

  6. Ordered logit - Wikipedia

    en.wikipedia.org/wiki/Ordered_logit

    In statistics, the ordered logit model or proportional odds logistic regression is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. [1]

  7. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis). The logistic distribution is a special case of the Tukey lambda distribution.

  8. Multivariate adaptive regression spline - Wikipedia

    en.wikipedia.org/wiki/Multivariate_adaptive...

    Thus, for example, MARS models can incorporate logistic regression to predict probabilities. Non-linear regression is used when the underlying form of the function is known and regression is used only to estimate the parameters of that function. MARS, on the other hand, estimates the functions themselves, albeit with severe constraints on the ...

  9. Separation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Separation_(statistics)

    In statistics, separation is a phenomenon associated with models for dichotomous or categorical outcomes, including logistic and probit regression.Separation occurs if the predictor (or a linear combination of some subset of the predictors) is associated with only one outcome value when the predictor range is split at a certain value.