Search results
Results From The WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.
This real Jordan form is a consequence of the complex Jordan form. For a real matrix the nonreal eigenvectors and generalized eigenvectors can always be chosen to form complex conjugate pairs. Taking the real and imaginary part (linear combination of the vector and its conjugate), the matrix has this form with respect to the new basis.
Wilhelm Jordan (1 March 1842, Ellwangen, Württemberg – 17 April 1899, Hanover) was a German geodesist who conducted surveys in Germany and Africa and founded the German geodesy journal. Biography [ edit ]
Newton's method is particularly useful when dealing with families of related matrices that behave enough like the sequence manufactured for the homotopy above: sometimes a good starting point for refining an approximation for the new inverse can be the already obtained inverse of a previous matrix that nearly matches the current matrix, for ...
"The Gauss-Jordan (GJ) method is a variant of Gaussian elimination (GE). It differs in eliminating the unknown equations above the main diagonal as well as below the main diagonal. The Gauss-Jordan method is equivalent to the use of reduced row echelon form of linear algebra texts. GJ requires 50% more multiplication and division operation than ...
A more precise statement is given by the Jordan normal form theorem, which states that in this situation, A is similar to an upper triangular matrix of a very particular form. The simpler triangularization result is often sufficient however, and in any case used in proving the Jordan normal form theorem. [1] [3]
G4 is a compound method in spirit of the other Gaussian theories and attempts to take the accuracy achieved with G3X one small step further. This involves the introduction of an extrapolation scheme for obtaining basis set limit Hartree-Fock energies, the use of geometries and thermochemical corrections calculated at B3LYP/6-31G(2df,p) level, a ...