Ad
related to: assignment 12 the remainder theorem class 9study.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product of and a polynomial in of degree one less than the degree of .
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
In the above theorem, each of the four integers has a name of its own: a is called the dividend, b is called the divisor, q is called the quotient and r is called the remainder. The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division.
Remainder theorem may refer to: Polynomial remainder theorem; Chinese remainder theorem This page was last edited on 29 December 2019, at 22:03 (UTC). Text is ...
Chevalley–Warning theorem (field theory) Chinese remainder theorem (number theory) Choi's theorem on completely positive maps (operator theory) Chomsky–Schützenberger enumeration theorem (formal language theory) Chomsky–Schützenberger representation theorem (formal language theory) Choquet–Bishop–de Leeuw theorem (functional analysis)
The Chinese remainder theorem appears as an exercise [16] in Sunzi Suanjing (between the third and fifth centuries). [17] (There is one important step glossed over in Sunzi's solution: [note 4] it is the problem that was later solved by Āryabhaṭa's Kuṭṭaka – see below.)
Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.