When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  3. Bending stiffness - Wikipedia

    en.wikipedia.org/wiki/Bending_stiffness

    The bending stiffness is the resistance of a member against bending deflection/deformation.It is a function of the Young's modulus, the second moment of area of the beam cross-section about the axis of interest, length of the beam and beam boundary condition.

  4. Cantilever method - Wikipedia

    en.wikipedia.org/wiki/Cantilever_method

    The cantilever method is considered one of the two primary approximate methods (the other being the portal method) for indeterminate structural analysis of frames for lateral loads. Its use is recommended for frames that are taller than they are wide, and therefore behave similar to a beam cantilevered up from the ground.

  5. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations. Otherwise methods such as virtual work , direct integration , Castigliano's method , Macaulay's method or the direct stiffness method are used.

  6. Flexural modulus - Wikipedia

    en.wikipedia.org/wiki/Flexural_modulus

    For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: [1]

  7. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    A cantilever Timoshenko beam under a point load at the free end For a cantilever beam , one boundary is clamped while the other is free. Let us use a right handed coordinate system where the x {\displaystyle x} direction is positive towards right and the z {\displaystyle z} direction is positive upward.

  8. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The stiffness of a structural element of a given material is the product of the material's Young's modulus and the element's second moment of area. Stiffness is measured in force per unit length (newtons per millimetre or N/mm), and is equivalent to the 'force constant' in Hooke's Law .

  9. Specific modulus - Wikipedia

    en.wikipedia.org/wiki/Specific_modulus

    By examining the formulas for area moment of inertia, we can see that the stiffness of this beam will vary approximately as the third power of the radius or height. Thus the second moment of area will vary approximately as the inverse of the cube of the density, and performance of the beam will depend on Young's modulus divided by density cubed .