When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Optical path length - Wikipedia

    en.wikipedia.org/wiki/Optical_path_length

    An electromagnetic wave propagating along a path C has the phase shift over C as if it was propagating a path in a vacuum, length of which, is equal to the optical path length of C. Thus, if a wave is traveling through several different media, then the optical path length of each medium can be added to find the total optical path length. The ...

  3. Rayleigh distance - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_distance

    Rayleigh distance in optics is the axial distance from a radiating aperture to a point at which the path difference between the axial ray and an edge ray is λ / 4. An approximation of the Rayleigh Distance is =, in which Z is the Rayleigh distance, D is the aperture of radiation, λ the wavelength. This approximation can be derived as follows.

  4. Optical path - Wikipedia

    en.wikipedia.org/wiki/Optical_path

    The geometrical optical-path length or simply geometrical path length (GPD) is the length of a segment in a given OP, i.e., the Euclidean distance integrated along a ray between any two points. [1] The mechanical length of an optical device can be reduced to less than the GPD by using folded optics .

  5. Vergence (optics) - Wikipedia

    en.wikipedia.org/wiki/Vergence_(optics)

    Light does not actually consist of imaginary rays and light sources are not single-point sources, thus vergence is typically limited to simple ray modeling of optical systems. In a real system, the vergence is a product of the diameter of a light source, its distance from the optics, and the curvature of the optical surfaces.

  6. Fourier optics - Wikipedia

    en.wikipedia.org/wiki/Fourier_optics

    Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).

  7. Cardinal point (optics) - Wikipedia

    en.wikipedia.org/wiki/Cardinal_point_(optics)

    In optics, surface vertices are the points where each optical surface crosses the optical axis. They are important primarily because they are physically measurable parameters for the optical element positions, and so the positions of the cardinal points of the optical system must be known with respect to the surface vertices to describe the system.

  8. Talbot effect - Wikipedia

    en.wikipedia.org/wiki/Talbot_effect

    The optical Talbot effect for monochromatic light, shown as a "Talbot carpet". At the bottom of the figure the light can be seen diffracting through a grating, and this pattern is reproduced at the top of the picture (one Talbot length away from the grating). At regular fractions of the Talbot length the sub-images form.

  9. Z-scan technique - Wikipedia

    en.wikipedia.org/wiki/Z-scan_technique

    In nonlinear optics z-scan technique is used to measure the non-linear index n 2 (Kerr nonlinearity) and the non-linear absorption coefficient Δα via the "closed" and "open" methods, respectively. As nonlinear absorption can affect the measurement of the non-linear index, the open method is typically used in conjunction with the closed method ...