When.com Web Search

  1. Ad

    related to: concurrent lines vs intersecting sides in real life history worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent. [8]

  3. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    The line joining them is then called the Pascal line of the hexagon. Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon.

  4. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem, case 1: the three lines are concurrent at a point O inside ABC Ceva's theorem, case 2: the three lines are concurrent at a point O outside ABC. In Euclidean geometry, Ceva's theorem is a theorem about triangles.

  5. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  6. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.

  7. Commandino's theorem - Wikipedia

    en.wikipedia.org/wiki/Commandino's_theorem

    Commandino's theorem, named after Federico Commandino (1509–1575), states that the four medians of a tetrahedron are concurrent at a point S, which divides them in a 3:1 ratio. In a tetrahedron a median is a line segment that connects a vertex with the centroid of the opposite face – that is, the centroid of the opposite triangle.

  8. Lies About American History We Were All Taught in School

    www.aol.com/lies-american-history-were-taught...

    A lot of U.S. history is too good to be true — and actually is not. Sometimes fact is ignored, or teachers miss the latest, and these tales are examples.

  9. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A cyclic polygon with an even number of sides has all angles equal if and only if the alternate sides are equal (that is, sides 1, 3, 5, … are equal, and sides 2, 4, 6, … are equal). [11] A cyclic pentagon with rational sides and area is known as a Robbins pentagon. In all known cases, its diagonals also have rational lengths, though ...