When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    For astronomical bodies other than Earth, and for short distances of fall at other than "ground" level, g in the above equations may be replaced by (+) where G is the gravitational constant, M is the mass of the astronomical body, m is the mass of the falling body, and r is the radius from the falling object to the center of the astronomical body.

  3. Free-fall time - Wikipedia

    en.wikipedia.org/wiki/Free-fall_time

    The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant ro

  4. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The data is in good agreement with the predicted fall time of /, where h is the height and g is the free-fall acceleration due to gravity. Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2, independent of its mass.

  5. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Based on air resistance, for example, the terminal speed of a skydiver in a belly-to-earth (i.e., face down) free fall position is about 55 m/s (180 ft/s). [3] This speed is the asymptotic limiting value of the speed, and the forces acting on the body balance each other more and more closely as the terminal speed is approached.

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    Then the attraction force vector onto a sample mass can be expressed as: = Here is the frictionless, free-fall acceleration sustained by the sampling mass under the attraction of the gravitational source. It is a vector oriented toward the field source, of magnitude measured in acceleration units.

  7. Jeans instability - Wikipedia

    en.wikipedia.org/wiki/Jeans_instability

    At the same time, gravity will attempt to contract the system even further, and will do so on a free-fall time = / /, where is the universal gravitational constant, is the gas density within the region, and = / is the gas number density for mean mass per particle (μ = 3.9 × 10 −24 g is appropriate for molecular hydrogen with 20% helium by ...

  8. Discover what the planets are predicting today for your health, love life, career and more with your virgo Daily Horoscope from AOL Horoscopes.

  9. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    Motion of the Center of Mass shows that the motion of the center of mass of an object in free fall is the same as the motion of a point object. The Solar System's barycenter, simulations showing the effect each planet contributes to the Solar System's barycenter.