When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    Continuity equations offer more examples of laws with both differential and integral forms, related to each other by the divergence theorem. In fluid dynamics , electromagnetism , quantum mechanics , relativity theory , and a number of other fields, there are continuity equations that describe the conservation of mass, momentum, energy ...

  3. Finite volume method - Wikipedia

    en.wikipedia.org/wiki/Finite_volume_method

    We assume that is well behaved and that we can reverse the order of integration. Also, recall that flow is normal to the unit area of the cell. Now, since in one dimension , we can apply the divergence theorem, i.e. =, and substitute for the volume integral of the divergence with the values of () evaluated at the cell surface (edges / and + /) of the finite volume as follows:

  4. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    In such cases, the solution provided by the use of the retarded Green's function depends only on the past sources and is causal whereas the solution provided by the use of the advanced Green's function depends only on the future sources and is acausal. In these problems, it is often the case that the causal solution is the physically important one.

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge. The divergence of a tensor field of non-zero order k is written as ⁡ =, a contraction of a tensor field of order k − 1. Specifically, the divergence of a vector is a scalar.

  6. Solenoidal vector field - Wikipedia

    en.wikipedia.org/wiki/Solenoidal_vector_field

    An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}

  7. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point. As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the ...

  8. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  9. Four-gradient - Wikipedia

    en.wikipedia.org/wiki/Four-gradient

    As a component of the 4D Gauss' Theorem / Stokes' Theorem / Divergence Theorem [ edit ] In vector calculus , the divergence theorem , also known as Gauss's theorem or Ostrogradsky's theorem, is a result that relates the flow (that is, flux ) of a vector field through a surface to the behavior of the vector field inside the surface.