When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    KIT AIS Data Set Multiple labeled training and evaluation datasets of aerial images of crowds. Images manually labeled to show paths of individuals through crowds. ~ 150 Images with paths People tracking, aerial tracking 2012 [158] [159] M. Butenuth et al. Wilt Dataset Remote sensing data of diseased trees and other land cover.

  5. Category:Datasets in machine learning - Wikipedia

    en.wikipedia.org/wiki/Category:Datasets_in...

    Training, validation, and test data sets This page was last edited on 5 May 2023, at 21:06 (UTC). Text is available under the Creative Commons Attribution-ShareAlike ...

  6. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  7. Group method of data handling - Wikipedia

    en.wikipedia.org/wiki/Group_method_of_data_handling

    First, we split the full dataset into two parts: a training set and a validation set. The training set would be used to fit more and more model parameters, and the validation set would be used to decide which parameters to include, and when to stop fitting completely. The GMDH starts by considering degree-2 polynomial in 2 variables.

  8. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    Sample images from MNIST test dataset. The MNIST database (Modified National Institute of Standards and Technology database [1]) is a large database of handwritten digits that is commonly used for training various image processing systems. [2] [3] The database is also widely used for training and testing in the field of machine learning.

  9. Overhead Imagery Research Data Set - Wikipedia

    en.wikipedia.org/wiki/Overhead_Imagery_Research...

    The Overhead Imagery Research Data Set (OIRDS) is a collection of an open-source, annotated, overhead images that computer vision researchers can use to aid in the development of algorithms. [1] Most computer vision and machine learning algorithms function by training on a large set of example data. [ 2 ]