Search results
Results From The WOW.Com Content Network
emmtrix Parallel Studio is a source-to-source parallelization tool combined with an interactive GUI developed by emmtrix Technologies GmbH. It takes C, MATLAB, Simulink, Scilab or Xcos source code as input and generates parallel C code as output. It relies on static schedule and a message passing API for the parallel program.
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. [1] Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism.
The bulk synchronous parallel (BSP) abstract computer is a bridging model for designing parallel algorithms. It is similar to the parallel random access machine (PRAM) model, but unlike PRAM, BSP does not take communication and synchronization for granted. In fact, quantifying the requisite synchronization and communication is an important part ...
Sequential vs. data-parallel job execution. Data parallelism is parallelization across multiple processors in parallel computing environments. It focuses on distributing the data across different nodes, which operate on the data in parallel. It can be applied on regular data structures like arrays and matrices by working on each element in ...
In computer science, stream processing (also known as event stream processing, data stream processing, or distributed stream processing) is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation.
An initial version of this model was introduced, under the MapReduce name, in a 2010 paper by Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. [2] As they and others showed, it is possible to simulate algorithms for other models of parallel computation, including the bulk synchronous parallel model and the parallel RAM, in the massively parallel communication model.
Parallel algorithm; Parallel algorithms for minimum spanning trees; Parallel breadth-first search; Parallel computation thesis; Parallel Element Processing Ensemble; Parallel mesh generation; Parallel processing (DSP implementation) Parallel Virtual Machine; Parallelization contract; Parareal; Parsytec; Programming with Big Data in R ...
Minimizing the depth/span is important in designing parallel algorithms, because the depth/span determines the shortest possible execution time. [8] Alternatively, the span can be defined as the time T ∞ spent computing using an idealized machine with an infinite number of processors. [9] The cost of the computation is the quantity pT p. This ...