Search results
Results From The WOW.Com Content Network
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
This is a list of hash functions, including cyclic redundancy checks, checksum functions, and cryptographic hash functions. This list is incomplete ; you can help by adding missing items . ( February 2024 )
The sponge construction for hash functions. P i are blocks of the input string, Z i are hashed output blocks.. In cryptography, a sponge function or sponge construction is any of a class of algorithms with finite internal state that take an input bit stream of any length and produce an output bit stream of any desired length.
Cryptographic hash functions are functions that take a variable-length input and return a fixed-length output, which can be used in, for example, a digital signature. For a hash function to be secure, it must be difficult to compute two inputs that hash to the same value ( collision resistance ) and to compute an input that hashes to a given ...
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
In cryptography and computer science, a hash tree or Merkle tree is a tree in which every "leaf" node is labelled with the cryptographic hash of a data block, and every node that is not a leaf (called a branch, inner node, or inode) is labelled with the cryptographic hash of the labels of its child nodes.
BLAKE is a cryptographic hash function based on Daniel J. Bernstein's ChaCha stream cipher, but a permuted copy of the input block, XORed with round constants, is added before each ChaCha round. Like SHA-2, there are two variants differing in the word size. ChaCha operates on a 4×4 array of words.