Ads
related to: parabola equation examples
Search results
Results From The WOW.Com Content Network
For a parametric equation of a parabola in general position see § As the affine image of the unit parabola. The implicit equation of a parabola is defined by an irreducible polynomial of degree two: + + + + + =, such that =, or, equivalently, such that + + is the square of a linear polynomial.
Regardless of the format, the graph of a univariate quadratic function () = + + is a parabola (as shown at the right). Equivalently, this is the graph of the bivariate quadratic equation = + +. If a > 0, the parabola opens upwards. If a < 0, the parabola opens downwards.
While a parabolic arch may resemble a catenary arch, a parabola is a quadratic function while a catenary is the hyperbolic cosine, cosh(x), a sum of two exponential functions. One parabola is f(x) = x 2 + 3x − 1, and hyperbolic cosine is cosh(x) = e x + e −x / 2 . The curves are unrelated.
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
The equation of a parabola is, up to similarity, translating so that the vertex is at the origin and rotating so that the axis is horizontal, x = y 2. In polar coordinates this becomes = . The inverse curve then has equation
Consider, for example, the one-parameter family of tangent lines to the parabola y = x 2. These are given by the generating family F(t,(x,y)) = t 2 – 2tx + y. The zero level set F(t 0,(x,y)) = 0 gives the equation of the tangent line to the parabola at the point (t 0,t 0 2).
From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)