Search results
Results From The WOW.Com Content Network
In computer science, the Edmonds–Karp algorithm is an implementation of the Ford–Fulkerson method for computing the maximum flow in a flow network in (| | | |) time. The algorithm was first published by Yefim Dinitz in 1970, [ 1 ] [ 2 ] and independently published by Jack Edmonds and Richard Karp in 1972. [ 3 ]
Over the years, various improved solutions to the maximum flow problem were discovered, notably the shortest augmenting path algorithm of Edmonds and Karp and independently Dinitz; the blocking flow algorithm of Dinitz; the push-relabel algorithm of Goldberg and Tarjan; and the binary blocking flow algorithm of Goldberg and Rao.
The complete Karmarkar–Karp algorithm (CKK) finds an optimal solution by constructing a tree of degree !. In the case k =2, each level corresponds to a pair of numbers, and the two branches correspond to taking their difference (i.e. putting them in different sets), or taking their sum (i.e. putting them in the same set).
The Ford–Fulkerson method or Ford–Fulkerson algorithm (FFA) is a greedy algorithm that computes the maximum flow in a flow network.It is sometimes called a "method" instead of an "algorithm" as the approach to finding augmenting paths in a residual graph is not fully specified [1] or it is specified in several implementations with different running times. [2]
Dinitz's algorithm and the Edmonds–Karp algorithm (published in 1972) both independently showed that in the Ford–Fulkerson algorithm, if each augmenting path is the shortest one, then the length of the augmenting paths is non-decreasing and the algorithm always terminates.
Richard Manning Karp (born January 3, 1935) is an American computer scientist and computational theorist at the University of California, Berkeley.He is most notable for his research in the theory of algorithms, for which he received a Turing Award in 1985, The Benjamin Franklin Medal in Computer and Cognitive Science in 2004, and the Kyoto Prize in 2008.
The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...
The push–relabel algorithm is considered one of the most efficient maximum flow algorithms. The generic algorithm has a strongly polynomial O(V 2 E) time complexity, which is asymptotically more efficient than the O(VE 2) Edmonds–Karp algorithm. [2] Specific variants of the algorithms achieve even lower time complexities.