Search results
Results From The WOW.Com Content Network
Headway is the distance or duration between vehicles in a transit system. The minimum headway is the shortest such distance or time achievable by a system without a reduction in the speed of vehicles. The precise definition varies depending on the application, but it is most commonly measured as the distance from the tip (front end) of one ...
The main predictor of dwell times varies widely by mode, time, and line. However, dwell times are usually affected mostly by the number of passengers needing to board and alight from a vehicle. Density imbalance along the platform and between vehicles is mainly due to human and motivational factors (minimising distance and time at the arrival) [7]
Used to determine the distance headway between a vehicle and its predecessor. One of the simplest model in this category is the Pipe's rule, the basic assumption of this model is "A good rule for following another vehicle at a safe distance is to allow yourself at least the length of a car between your vehicle and the vehicle ahead for every ten miles per hour (16.1 km/h) of speed at which you ...
In traffic flow modeling, the intelligent driver model (IDM) is a time-continuous car-following model for the simulation of freeway and urban traffic. It was developed by Treiber, Hennecke and Helbing in 2000 to improve upon results provided with other "intelligent" driver models such as Gipps' model, which loses realistic properties in the deterministic limit.
Route capacity is the maximum number of vehicles, people, or amount of freight than can travel a given route in a given amount of time, usually an hour. It may be limited by the worst bottleneck in the system, [ 1 ] such as a stretch of road with fewer lanes. [ 2 ]
In transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
The name derives from the fact that departures take place at the same time or times during the day. For example, services with a half-hourly frequency might leave at 5:15, 5:45, 6:15, 6:45, 7:15, 7:45 etc. The goal is to enhance the attractiveness and versatility of public transport.
In queueing theory, a discipline within the mathematical theory of probability, traffic equations are equations that describe the mean arrival rate of traffic, allowing the arrival rates at individual nodes to be determined.