Ad
related to: henri lebesgue calculus
Search results
Results From The WOW.Com Content Network
Henri Léon Lebesgue ForMemRS [1] (French: [ɑ̃ʁi leɔ̃ ləbɛɡ]; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis.
The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral, which it largely replaced in mathematical analysis since the first half of the 20th century. It can accommodate functions ...
Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.
The Vitali covering lemma is vital to the proof of this theorem; its role lies in proving the estimate for the Hardy–Littlewood maximal function.. The theorem also holds if balls are replaced, in the definition of the derivative, by families of sets with diameter tending to zero satisfying the Lebesgue's regularity condition, defined above as family of sets with bounded eccentricity.
Thus Henri Lebesgue introduced the integral bearing his ... The fundamental theorem of calculus is the statement that differentiation and integration are inverse ...
Calculus is the mathematical study of continuous change, ... Henri Lebesgue invented measure theory, based on earlier developments by Émile Borel, ...
Lebesgue–Stieltjes integrals, named for Henri Leon Lebesgue and Thomas Joannes Stieltjes, are also known as Lebesgue–Radon integrals or just Radon integrals, after Johann Radon, to whom much of the theory is due.
One result on the differentiation of integrals is the Lebesgue differentiation theorem, as proved by Henri Lebesgue in 1910. Consider n-dimensional Lebesgue measure λ n on n-dimensional Euclidean space R n.