Search results
Results From The WOW.Com Content Network
where ε is the average rate of dissipation of turbulence kinetic energy per unit mass, and; ν is the kinematic viscosity of the fluid.; Typical values of the Kolmogorov length scale, for atmospheric motion in which the large eddies have length scales on the order of kilometers, range from 0.1 to 10 millimeters; for smaller flows such as in laboratory systems, η may be much smaller.
Jackson and Eklund created two scales that have been proven to be psychometrically valid and reliable: the flow state scale-2 (which measures flow as a state), and the dispositional flow scale-2 (designed to measure flow as either a general trait or domain-specific trait).
Defining equation SI units Dimension Flow velocity vector field u = (,) m s −1 [L][T] −1: Velocity pseudovector field ω = s −1 [T] −1: Volume velocity ...
The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).
In computational fluid dynamics, the k–omega (k–ω) turbulence model [10] is a common two-equation turbulence model that is used as a closure for the Reynolds-averaged Navier–Stokes equations (RANS equations). The model attempts to predict turbulence by two partial differential equations for two variables, k and ω, with the first ...
In some cases, the system may not have a fixed natural length or time scale, while the solution depends on space or time. It is then necessary to construct a scale using space or time and the other dimensional quantities present—such as the viscosity . These constructs are not 'guessed' but are derived immediately from the scaling of the ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.