When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    (Extensive online material on ODE numerical analysis history, for English-language material on the history of ODE numerical analysis, see, for example, the paper books by Chabert and Goldstine quoted by him.) Pchelintsev, A.N. (2020). "An accurate numerical method and algorithm for constructing solutions of chaotic systems".

  3. System of differential equations - Wikipedia

    en.wikipedia.org/wiki/System_of_differential...

    For an arbitrary system of ODEs, a set of solutions (), …, are said to be linearly-independent if: + … + = is satisfied only for = … = =.A second-order differential equation ¨ = (,, ˙) may be converted into a system of first order linear differential equations by defining = ˙, which gives us the first-order system:

  4. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    For a system of the form (,, ′) =, some sources also require that the Jacobian matrix (,,) be non-singular in order to call this an implicit ODE [system]; an implicit ODE system satisfying this Jacobian non-singularity condition can be transformed into an explicit ODE system. In the same sources, implicit ODE systems with a singular Jacobian ...

  5. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    Frequently models of physical systems contain terms representing fast-decaying elements (i.e. with large negative exponential arguments). Even when these are not of interest in the overall solution, the instability they can induce means that an exceptionally small timestep would be required if the Euler method is used.

  6. Cash–Karp method - Wikipedia

    en.wikipedia.org/wiki/Cash–Karp_method

    In numerical analysis, the Cash–Karp method is a method for solving ordinary differential equations (ODEs). It was proposed by Professor Jeff R. Cash [1] from Imperial College London and Alan H. Karp from IBM Scientific Center. The method is a member of the Runge–Kutta family of ODE solvers. More specifically, it uses six function ...

  7. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  8. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit methods calculate the state of a system at a later time from the state of the system at the current time, while implicit methods find a solution by solving an equation involving both the current state of the system and the later one.

  9. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    This can be contrasted with implicit linear multistep methods (the other big family of methods for ODEs): an implicit s-step linear multistep method needs to solve a system of algebraic equations with only m components, so the size of the system does not increase as the number of steps increases. [27]