Ads
related to: increasing functions a level maths questions by topic 11 answers
Search results
Results From The WOW.Com Content Network
A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...
In more advanced mathematics the monotone convergence theorem usually refers to a fundamental result in measure theory due to Lebesgue and Beppo Levi that says that for sequences of non-negative pointwise-increasing measurable functions (), taking the integral and the supremum can be interchanged with the result being finite if either one is ...
The function which takes the value 0 for rational number and 1 for irrational number (cf. Dirichlet function) is bounded. Thus, a function does not need to be "nice" in order to be bounded. The set of all bounded functions defined on [ 0 , 1 ] {\displaystyle [0,1]} is much larger than the set of continuous functions on that interval.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point.
In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...
In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy, or a Schwichtenberg-Wainer hierarchy) [1] is an ordinal-indexed family of rapidly increasing functions f α: N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal).
Advanced Level (A-Level) Mathematics is a qualification of further education taken in the United Kingdom (and occasionally other countries as well). In the UK, A-Level exams are traditionally taken by 17-18 year-olds after a two-year course at a sixth form or college .
Ad
related to: increasing functions a level maths questions by topic 11 answers