Search results
Results From The WOW.Com Content Network
Add the digits in blocks of two from right to left. The result must be divisible by 11. [2] 627: 6 + 27 = 33 = 3 × 11. Subtract the last digit from the rest. The result must be divisible by 11. 627: 62 − 7 = 55 = 5 × 11. Add 10 times the last digit to the rest. The result must be divisible by 11. (Works because 99 is divisible by 11).
For example, if a = 2 and p = 7, then 2 7 = 128, and 128 − 2 = 126 = 7 × 18 is an integer multiple of 7. If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols: [1] [2] ().
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).
Two properties of 1001 are the basis of a divisibility test for 7, 11 and 13. The method is along the same lines as the divisibility rule for 11 using the property 10 ≡ -1 (mod 11). The two properties of 1001 are 1001 = 7 × 11 × 13 in prime factors 10 3 ≡ -1 (mod 1001) The method simultaneously tests for divisibility by any of the factors ...
There are only 21853 pseudoprimes base 2 that are less than 2.5 × 10 10 (see page 1005 of [3]). This means that, for n up to 2.5 × 10 10, if 2 n −1 (modulo n) equals 1, then n is prime, unless n is one of these 21853 pseudoprimes. Some composite numbers (Carmichael numbers) have the property that a n − 1 is 1 (modulo n) for every a that ...
A sanity test can refer to various orders of magnitude and other simple rule-of-thumb devices applied to cross-check mathematical calculations. For example: If one were to attempt to square 738 and calculated 54,464, a quick sanity check could show that this result cannot be true. Consider that 700 < 738, yet 700 2 = 7 2 × 100 2 = 490,000 ...
The addition, subtraction and multiplication of even and odd integers obey simple rules. The addition or subtraction of two even numbers or of two odd numbers always produces an even number, e.g., 4 + 6 = 10 and 3 + 5 = 8. Conversely, the addition or subtraction of an odd and even number is always odd, e.g., 3 + 8 = 11. The multiplication of ...