When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    It is divisible by 2 and by 11. [6] 352: it is divisible by 2 and by 11. 23: Add 7 times the last digit to the rest. (Works because 69 is divisible by 23.) 3,128: 312 + 8 × 7 = 368: 36 + 8 × 7 = 92. Add 3 times the last two digits to the rest. (Works because 299 is divisible by 23.) 1,725: 17 + 25 × 3 = 92. Subtract 16 times the last digit ...

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The first condition is the Fermat primality test using base 2. In general, if p ≡ a (mod x 2 +4), where a is a quadratic non-residue (mod x 2 +4) then p should be prime if the following conditions hold: 2 p−1 ≡ 1 (mod p), f(1) p+1 ≡ 0 (mod p), f(x) k is the k-th Fibonacci polynomial at x.

  4. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.

  5. Sanity check - Wikipedia

    en.wikipedia.org/wiki/Sanity_check

    A sanity test can refer to various orders of magnitude and other simple rule-of-thumb devices applied to cross-check mathematical calculations. For example: If one were to attempt to square 738 and calculated 54,464, a quick sanity check could show that this result cannot be true. Consider that 700 < 738, yet 700 2 = 7 2 × 100 2 = 490,000 ...

  6. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).

  7. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  8. Zsigmondy's theorem - Wikipedia

    en.wikipedia.org/wiki/Zsigmondy's_theorem

    In number theory, Zsigmondy's theorem, named after Karl Zsigmondy, states that if > > are coprime integers, then for any integer , there is a prime number p (called a primitive prime divisor) that divides and does not divide for any positive integer <, with the following exceptions:

  9. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Cuisenaire rods: 5 (yellow) cannot be evenly divided in 2 (red) by any 2 rods of the same color/length, while 6 (dark green) can be evenly divided in 2 by 3 (lime green). In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not. [1]