When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pressure head - Wikipedia

    en.wikipedia.org/wiki/Pressure_head

    Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:

  3. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The total hydraulic head of a fluid is composed of pressure head and elevation head. [1] [2] The pressure head is the equivalent gauge pressure of a column of water at the base of the piezometer, and the elevation head is the relative potential energy in terms of an elevation. The head equation, a simplified form of the Bernoulli principle for ...

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The head loss Δh (or h f) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is =, where: Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b]

  5. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The hydrostatic pressure p is defined as =, with p 0 some reference pressure, or when rearranged as head: =. The term ⁠ p / ρg ⁠ is also called the pressure head, expressed as a length measurement. It represents the internal energy of the fluid due to the pressure exerted on the container.

  6. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  7. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    Y th : theoretical specific supply; H t : theoretical head pressure; g: gravitational acceleration For the case of a Pelton turbine the static component of the head is zero, hence the equation reduces to: = ().

  8. Borda–Carnot equation - Wikipedia

    en.wikipedia.org/wiki/Borda–Carnot_equation

    These head losses can be expressed by using the Borda–Carnot equation, through the use of the coefficient of contraction μ: [5] μ = A 3 A 2 , {\displaystyle \mu \,=\,{\frac {A_{3}}{A_{2}}},} with A 3 the cross-sectional area at the location of strongest main flow contraction 3, and A 2 the cross-sectional area of the narrower part of the pipe.

  9. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...