Search results
Results From The WOW.Com Content Network
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1) has less practical importance, with the notable exceptions of β = 2, which gives the normal distribution, and of compressed exponential relaxation in the ...
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
The simplest I–V curve is that of a resistor, which according to Ohm's law exhibits a linear relationship between the applied voltage and the resulting electric current; the current is proportional to the voltage, so the I–V curve is a straight line through the origin with positive slope. The reciprocal of the slope is equal to the resistance.
For distinguishing the complex case from the real one, the extended function is also called complex exponential function or simply complex exponential. Most of the definitions of the exponential function can be used verbatim for definiting the complex exponential function, and the proof of their equivalence is the same as in the real case.
A log amplifier, which may spell log as logarithmic or logarithm and which may abbreviate amplifier as amp or be termed as a converter, is an electronic amplifier that for some range of input voltage has an output voltage approximately proportional to the logarithm of the input:
The logarithmic scale used for the bottom plot is useful for expressing the equation's exponential relationship. The Shockley diode equation , or the diode law , named after transistor co-inventor William Shockley of Bell Labs , models the exponential current–voltage (I–V) relationship of semiconductor diodes in moderate constant current ...
On the other hand, if the natural logarithm is defined as the inverse of the (natural) exponential function, then the derivative (for x > 0) can be found by using the properties of the logarithm and a definition of the exponential function. From the definition of the number = (+) /, the exponential function can be defined as ...