Search results
Results From The WOW.Com Content Network
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter .
Inscribed circles of various polygons An inscribed triangle of a circle A tetrahedron (red) inscribed in a cube (yellow) which is, in turn, inscribed in a rhombic triacontahedron (grey). (Click here for rotating model) In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or ...
The large triangle that is inscribed in the circle gets subdivided into three smaller triangles, all of which are isosceles because their upper two sides are radii of the circle. Inside each isosceles triangle the pair of base angles are equal to each other, and are half of 180° minus the apex angle at the circle's center.
As discussed above, every triangle has a unique inscribed circle (incircle) that is interior to the triangle and tangent to all three sides. Every triangle has a unique Steiner inellipse which is interior to the triangle and tangent at the midpoints of the sides. Marden's theorem shows how to find the foci of this ellipse. [56]
Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.
It is a theorem in Euclidean geometry that the three interior angle bisectors of a triangle meet in a single point. In Euclid's Elements, Proposition 4 of Book IV proves that this point is also the center of the inscribed circle of the triangle. The incircle itself may be constructed by dropping a perpendicular from the incenter to one of the ...
The center of the circle lies on the symmetry axis of the triangle, this distance above the base. An isosceles triangle has the largest possible inscribed circle among the triangles with the same base and apex angle, as well as also having the largest area and perimeter among the same class of triangles. [32]
The inscribed circle meets the triangle in three points of tangency, forming an equilateral contact triangle with side length = (+) = [2] where = + is the golden ratio. A circle with radius d around a point inside the triangle will meet or intersect at least two sides of the triangle.