Search results
Results From The WOW.Com Content Network
Wave speed is a wave property, which may refer to absolute value of: . phase velocity, the velocity at which a wave phase propagates at a certain frequency; group velocity, the propagation velocity for the envelope of wave groups and often of wave energy, different from the phase velocity for dispersive waves
The speed of a compression wave in a fluid is determined ... at its own speed, called the phase velocity, ... equal but opposite effects on the speed of sound, and ...
Signal velocity is usually equal to group velocity (the speed of a short "pulse" or of a wave-packet's middle or "envelope"). However, in a few special cases (e.g., media designed to amplify the front-most parts of a pulse and then attenuate the back section of the pulse), group velocity can exceed the speed of light in vacuum, while the signal ...
Propagation of a wave packet demonstrating a phase velocity greater than the group velocity. This shows a wave with the group velocity and phase velocity going in different directions. The group velocity is positive, while the phase velocity is negative. [1] The phase velocity of a wave is the rate at which the wave propagates in any medium.
If ω is directly proportional to k, then the group velocity is exactly equal to the phase velocity. A wave of any shape will travel undistorted at this velocity. If ω is a linear function of k, but not directly proportional (ω = ak + b, b ≠ 0), then the group velocity and phase velocity are different.
Wave velocity is a general concept, ... the electric and magnetic fields satisfy the wave equation both with speed equal to that of the speed of light.
In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave. Ordinary wavenumber is defined as the number of wave cycles divided by length; it is a physical quantity with dimension of reciprocal length , expressed in SI units of cycles per metre or reciprocal metre (m −1 ).
The speed of gravitational waves in the general theory of relativity is equal to the speed of light in vacuum, c. [3] Within the theory of special relativity, the constant c is not only about light; instead it is the highest possible speed for any interaction in nature.