Search results
Results From The WOW.Com Content Network
Since right Haar measure is well-defined up to a positive scaling factor, this equation shows the modular function is independent of the choice of right Haar measure in the above equation. The modular function is a continuous group homomorphism from G to the multiplicative group of positive real numbers .
Any compact group is locally compact.. In particular the circle group T of complex numbers of unit modulus under multiplication is compact, and therefore locally compact. The circle group historically served as the first topologically nontrivial group to also have the property of local compactness, and as such motivated the search for the more general theory, presented here.
If G is a locally compact Hausdorff group, G carries an essentially unique left-invariant countably additive Borel measure μ called a Haar measure.Using the Haar measure, one can define a convolution operation on the space C c (G) of complex-valued continuous functions on G with compact support; C c (G) can then be given any of various norms and the completion will be a group algebra.
Since every operator in SU(2) is a rotation of the Bloch sphere, the Haar measure for spin-1/2 particles is invariant under all rotations of the Bloch sphere. This implies that the Haar measure is the rotationally invariant measure on the Bloch sphere, which can be thought of as a constant density distribution over the surface of the sphere.
The representations of the group are found by considering representations of (), the Lie algebra of SU(2).Since the group SU(2) is simply connected, every representation of its Lie algebra can be integrated to a group representation; [1] we will give an explicit construction of the representations at the group level below.
which would say the left translate of a right Haar measure is a multiple of a left Haar measure. However, the left translate of a right Haar measure is also a right Haar measure so what you're looking for is an assertion that a right Haar measure is a multiple of a left Haar measure, e.g. is itself left Haar. That's only true for unimodular groups.
A maximal torus in the special unitary group SU(n) ⊂ U(n) is just the intersection of T and SU(n) which is a torus of dimension n − 1. A maximal torus in the special orthogonal group SO(2 n ) is given by the set of all simultaneous rotations in any fixed choice of n pairwise orthogonal planes (i.e., two dimensional vector spaces).
The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example. The Haar sequence was proposed in 1909 by Alfréd Haar. [1] Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and ...